Optimizing Logging and Recovery of Video Data in
DBMSs

Joseph Komskis

Isaac Weintraub
Georgia Institute of Technology
Atlanta, Georgia, USA

1 THE PROBLEM

Our project seeks to explore and optimize how modifications
to video data can be correctly and efficiently logged and re-
covered in a database management system. When video data
is stored directly in a general purpose relational database,
significant overhead is incurred during logging and recovery
whenever the data is modified if physical logging is used.
When these general purpose databases store videos or other
multimedia data, they tend to be stored opaquely as BLOBs.
Whenever the BLOB is modified, the database must track
in the log file the physical, byte-level changes in the data.
This may be acceptable in video-related workloads that are
read-mostly and perform few changes to the data once it
is in the database, but some applications may need to pro-
cess the frames of a video by adding filters or changing the
resolution before running typical workloads on it. In these
cases logging and recovery will be crucial to the overall per-
formance of the DBMS. In our project we seek to explore
ways to optimize how changes to video data are logged and
recovered by treating video data as a first-class citizen in
a storage engine and leveraging logical logging that takes
advantage of the storage engine’s knowledge of the format
of video data and the modifications performed on it.

2 PROBLEM IMPORTANCE

As multimedia data has become more pervasive in recent
years, proper and efficient management of video data has
become increasingly important. Video data is often used in
applications such as machine learning and virtual reality.
Databases are often employed to help manage large amounts
of data, and while databases can be used to store video data,
most tend to be agnostic to the data stored in them. This
can lead to challenges and inefficiencies when storing video
data due to its large size and the operations performed on
the data. For example, if only a small portion of a video is
needed, a database that stores the video as a BLOB must
read and return the entire video. In contrast, a DBMS that
understands how a video is split into frames may be able to
return only the relevant frames to the user.

3 RELATED WORK

Several video DBMSs have been developed that are designed
for efficient processing of video data. However, few of these
video DBMSs focus on the issue of logging and recovery of
modifications made to the data stored in these databases.
VisualWordDB [7] use a dedicated video store for video data
and a relational store for other data. Video data is read-only.
If a video needs to be modified for processing, a new view
is created from the existing video, which may be stored on
disk to serve future requests. Similarly, in BilVideo [6] raw
video data are stored separately from video data features.
VDBMS [5] does not make as strong of a distinction between
the storage of video data and metadata, but does specify that
the database buffer pool is split between the database buffer
area and the streaming area where requests for streams are
serviced. In LightDB [8], every video is read-only, immutable,
and versioned. Whenever a video is written, a new copy
of the video is made and updated as needed. This has the
added benefit of providing snapshot isolation during query
evaluation.

VDMS [10] is an open source project from Intel that effi-
ciently supports visual analytics and machine learning on
visual data. VDMS stores and retrieves visual data through a
custom library, which supports storing data in a new format
that is more machine friendly and efficient for data analysis
and machine learning workloads. Metadata is stored in a
high performance graph database that leverages persistent
memory. VStore [11] is another video store built to support
video analytics. Unlike other projects, VStore determines
video formats and parameters from the needs of the analyt-
ics workloads run on the data. It attempts to find the fastest
format and parameters for data consumption given the ac-
curacy needs of the operators run on the video data. VStore
uses LMDB to store video data, similar to how our project
leverages Petastorm for this purpose.

4 IMPLEMENTATION

Our project seeks to solve this problem by designing and
implementing a protocol that can optimize the logging and
recovery of changes to video data in a DBMS that is aware
of video data and its storage format. We have implemented



our project using Python, primarily because it has a strong
ecosystem of existing tools we can leverage. Using similar
technologies to those used in EVA [2], we have used Petas-
torm [4] as a storage engine for our video data. Petastorm
is a library built on top of Apache Spark [1], a distributed
processing system used for big data and analytics workloads.
Petastorm stores data in Apache Parquet files, and supports
directly supplying that data to machine learning frameworks
such as Tensorflow and PyTorch. We use OpenCV [3] for
processing videos. With OpenCV we can apply various mod-
ifications to videos such as color filters, blurs, resizing, and
so on. We found these tools integrate into Python programs
quite easily.
We now discuss our progress on the project thus far.

4.1 Limitations & Surprises

When we started implementing a logging and recovery scheme
based on physical logging, we ran into several surprises in
using Petastorm as a storage engine. First, we learned that
Petastorm does not support in-place updates to datasets.
The only way to write to a dataset is to append to an exist-
ing dataset or overwrite it entirely. Additionally, Petastorm
does not provide any guarantees on the atomicity of writes.
When writing is done in "overwrite" mode, Petastorm first
deletes the existing dataset, then writes the new data to the
dataset. If the program crashes during this process, the old
data will be lost and whatever new data was written will
remain. These limitations seem to come from Spark, rather
than from Petastorm itself. Given that Spark and Petastorm
are primarily used in big data and analytics environments,
where data is typically inserted or appended once and rarely,
if ever, modified, these limitations are reasonable for those
workloads. This did impact our first logging and recovery
protocol, as we discuss in the next section. When developing
a more optimized protocol, we were able to optimize for
these limitations and improve performance.

Initially, we planned for our logging and recovery pro-
tocol to be similar to the ARIES protocol used in a general
purpose database. As we implemented the protocol we found
it diverged from ARIES in multiple ways. This was mostly
due to the fact that, unlike a general purpose database, Petas-
torm does not have any kind of buffer pool. All reads and
writes are done directly from and to disk. Thus, our protocol
had to be adapted to account for these differences. ARIES
was still useful as a set of guiding principles. When we later
implemented a buffer manager on top of Petastorm and im-
plemented a new logging and recovery scheme using it the
protocol became more similar to ARIES.

Joseph Komskis and Isaac Weintraub

4.2 Naive Logging and Recovery Protocol

To establish a baseline for performance, we developed sev-
eral components to implement a naive logging and recovery
protocol based on physical logging. The transaction manager
component acts as a new entry point to making updates to
objects and leverages the storage engine to persist them. The
transaction manager provides transaction semantics and pro-
vides consistency, atomicity, and durability for operations
performed in a transaction. For our project, we consider
concurrent transactions and isolation between them to be
out of scope. The log manager component is also used by
the transaction manager. It writes log records to the log file
and parses them during recovery time. Lastly, we created
an update processor component which, given a raw video
frame and a desired operation, will apply the operation to
the frame and return it. This component leverages OpenCV
to process the frames.

The logging protocol is as follows. When a transaction
starts, the log manager writes a log record to the log and the
transaction manager creates a new directory in the file sys-
tem for the transaction. This directory is a private workspace
where the transaction can store the before and after versions
of video files when updating them. We did this rather than
store the data directly in the log file to keep the log file
more compact and because it made the protocol simpler to
implement and reason about.

When a transaction performs an update, the transaction
manager will read the video from Petastorm and save it to the
transaction’s private directory. This is done to support rolling
back the transaction later in case the system crashes before
the transaction commits. While saving the video, the update
processor takes each frame and produces the updated frames.
The updated video is also saved to the transaction’s private
directory so it can subsequently be read back to save it to
Petastorm. Once the before and after image of the video are
persisted, the log manager writes a log record that includes
the transaction ID and paths to the before and after images.
Once the record is written, the updated video is immediately
rewritten to Petastorm to persist it. Since Petastorm does not
support in-place updates, we are forced to save and rewrite
the entire video on each update, regardless of whether the
update is modifying every frame or only one frame.

Committing a transaction under this protocol is simple:
the log manager writes a record acknowledging the commit,
and then the transaction manager deletes the transaction’s
private directory.

If a transaction must be aborted, all updates must be un-
done since they are all immediately persisted to Petastorm.
The log manager goes backwards through the update records
for the transaction and writes each before image back to
Petastorm. Once this is complete it writes an abort record to



Optimizing Logging and Recovery of Video Data in DBMSs

the log to indicate the abort is completed. This protocol does
not write compensation log records to the log for simplic-
ity. Since all the update records are idempotent, if a crash
occurs during the abort process we can simply rollback all
the updates again at a small performance penalty.

Recovery is simplified since all updates are immediately
persisted to Petastorm. Our recovery is made up of analysis
and undo phases similar similar to those in ARIES. In the
analysis phase the log records are read in order from the
beginning and the latest log sequence number from each
transaction is tracked. Commit and abort records are only
written once a transaction has finished committing or abort-
ing, so if one of these records is found that transaction can
be removed from the list of active transactions. In the undo
phase, every active transaction is rolled back as in the abort
process.

Our logging and recovery protocols currently do not sup-
port any checkpointing. Given that we expect writes in a
video analytics system to be relatively infrequently com-
pared to a general purposes database, the log grows quite
slowly and thus checkpointing is less critical. The majority
of a transaction’s storage footprint is in its private directory
and is deleted upon committing or aborting, so a transaction
wastes relatively little space once it is completed. Upon the
completion of the recovery algorithm, the log file and all
transaction directories could be deleted to fully clean any
wasted space from old transactions.

4.3 Buffer Manager

When looking for ways to optimize our naive protocol, we
found implementing a buffer manager on top of Petastorm
had several benefits. First, it required us to find a way to par-
tition Petastorm datasets into smaller chunks of frames in
order to efficiently transfer them between memory and disk.
Otherwise, it would only be possible to buffer entire videos,
which is not feasible for anything longer than a few minutes.
Once the datasets were partitioned into chunks, each chunk
could be written back to the storage engine without over-
writing the other chunks. This means parts of a video could
be updated by only reading and writing the relevant chunks.
Since each batch of frames could be updated independently
of each other, having a partitioned dataset opened the pos-
sibility of parallelizing read and write operations. We made
use of this when flushing the buffer manger during our tests
and benchmarks to increase performance.

Second, a buffer manager allowed us to buffer updated
portions of a videos and serve read and write requests from
memory before writing the chunk back to disk. The first time
a batch of frames is accessed a disk operation is still incurred,
but subsequent requests can read the batch from memory.
The buffer manager uses a simple LRU eviction policy when

a batch needs to be brought from disk and there are no free
slots in the buffer manager. Since writing to Petastorm we
found was quite slow, being able to delay writes significantly
improved performance.

We implemented these changes by first implementing a
new version of our existing storage engine interface from
EVA to automatically read and write datasets in terms of
partitions. We then created a buffer manager component
that used this new implementation.

4.4 Buffered Logging and Recovery
Protocols

After implementing a buffer manager on top of the storage
engine, we created a new transaction manager and logging
manager that were aware of the buffer manager and its prop-
erties and read and wrote data through the buffer manager
instead of going through the storage engine directly. We then
implemented a new logging and recovery protocol on top of
these new components with three different approaches that
use physical, hybrid, and logical logging and recovery respec-
tively. These three protocols are very similar, only differing
in how they log and recover changes made to videos.

The physical logging approach logs all redo and undo in-
formation physically to the transaction’s private workspace.
This is done similarly to our initial protocol by storing before
and after images of videos. The primary difference is that
the buffered protocol only needs to store the before and after
versions of the modified batches of frames instead of the
entire video.

The logical approach logs all redo and undo information
logically in the transaction log. Suppose a user wants to
apply a grayscale filter to all frames of a video or apply a
blur to a rectangular region of a subset of the frames of a
video prior to using the video. Instead of logging the changes
to the video at the byte level, the protocol logs the details
of the operation (e.g. a grayscale filter or a blur filter and
any parameters) and the frames to which it was applied.
To achieve this, we will require all operations users wish to
perform are predefined, so they can be referred to by name in
the log. It is easy to add new operations, and new operations
can leverage the functionality of OpenCV or other libraries.

The hybrid approach is a combination of the physical and
logical approaches that logs redo information logically and
undo information physically. Thus, each transaction stores
the before version of each modified batch of frames to its
private directory. It also stores in the transaction log the
details of update operations and paths to the before versions
of modified batches. We implemented this approach because
in reality one cannot use logical logging for all operations,
as not all operations can be logically undone. For example,
suppose a user wants to make a video grayscale or decrease



its resolution. Once a video is made grayscale or downscaled,
information about the video is lost, so it is nearly impossible
to add color back to it or upscale the video to its original
version. Thus, the logical approach described above must
fallback to hybrid logging when its update operation is not
reversible.

Other than the differences in how updates are undone
and redone, the rest of the logging and recovery protocol
is the same for all three approaches. When a transaction
performs an update, the transaction manager will read the
relevant batches through the buffer manager. The physical
and hybrid logging approaches will save the original versions
of the batches to their private directory to support physical
undo. Then, the update is applied to the batches of frames
in the buffer manager. The physical approach will also save
the updated batches to its directory to support physical redo.
Then, the log manager writes to the log file a log record
acknowledging the update, which is immediately flushed to
disk. Unlike our initial protocol the changed batches are not
immediately persisted to Petastorm.

When a transaction commits, the log manager writes a
log record acknowledging the commit. Since the changes
made to the video are not immediately flushed to disk, if the
system crashes before they are flushed then the changes will
need to be replayed.

When a transaction aborts, the log manager writes a log
record acknowledging the abort. Then, the log manager rolls
back the transaction by reading the log records written by the
transaction in reverse order and undoing its changes. Since
logically undoing changes to a video may not be idempotent,
compensation log records are used in all three approaches to
track which parts of a transaction have already been rolled
back in case a crash occurs during recovery. This can also
improve recovery time in the event of a crash during recov-
ery. As in normal operation, batches of frames are read and
written through the buffer manager rather than directly to
the storage engine. Once all update records for a transaction
have been reverted the log manager writes a transaction
end record to the log to indicate the transaction has finished
executing.

The recovery process is made up of analysis, redo, and
undo phases similar to that of ARIES. In the analysis phase
all log records are read in order and the latest log sequence
number for each transaction is tracked. Commit and trans-
action end records are written only when a transaction has
finished committing or aborting, respectively, so when one
of these records is found the transaction can be removed
from the list of active transactions. In the redo phase all log
records are again read in order, but this time all update and
CLR records are replayed to bring the database to the ex-
act state it was in before the crash. For logical and hybrid
logging this means reapplying the update operation and for

Joseph Komskis and Isaac Weintraub

physical logging this means reading the saved after images
and rewriting them to the buffer manager. Each frame tracks
the LSN of the latest update made to it, which facilitates
the redo process so hybrid and logical logging do not incor-
rectly reapply an update that has already been persisted. In
the undo phase, every active transaction found during the
analysis phase is rolled back using the process mentioned
earlier.

5 SOLUTION VALIDATION

To validate our solution we took many of the storage related
components from EVA and implemented our logging and
recovery protocol on top of them. This allowed us to test our
protocol in isolation.

We wrote unit tests for the various components we imple-
mented and for our protocols to ensure our code is working
correctly. For example, we wrote tests to ensure the buffer
manager properly reads and writes batches, flushes and dis-
cards slots, and evicts slots appropriately when needed. We
also wrote tests to ensure that our buffered protocol correctly
rolls back transactions upon abort, correctly redoes commit-
ted transactions after a crash (when no, some, or all buffer
manager slots were persisted before the crash), and correctly
handles CLR records if a crash occurs during recovery. From
this we are reasonably confident our code works as expected,
especially for the paths used in our benchmarks.

Towards this end, we have implemented a feature we are
calling "pressure points". Pressure points are conditional
edge cases we can enable and disable at runtime while our
tests are running. For example, we use pressure points to
cause an early return during the recovery process after a
CLR is written. This is used to simulate a crash during the
recovery process, so we can ensure that during the next
recovery phase the CLR is used correctly. These have helped
us ensure edge cases in our protocol are correct.

We also validated our implementation worked as we ex-
pected by running benchmarks on various aspects of our
protocols, as discussed in the next section.

6 SOLUTION EVALUATION

We evaluated the performance of buffered logging and re-
covery scheme approaches by comparing them against the
previous, more naive protocol implemented. From this we
measured noticeable performance improvements.

We first benchmarked the performance of logging across
three different variables: percent of the video modified, num-
ber of updates applied to the video, and length of the video
modified. In the percent updated benchmark (Fig. 1), we
wanted to see how modifying different amounts of a video
would impact performance. In this benchmark we performed
one update on a 2.5 minute video, which modified a certain



Optimizing Logging and Recovery of Video Data in DBMSs

3004

—"e . Protocol
o -—
\-\.\./-/ —— Logical
2504 Hybrid
—— Physical
200 —— Physical (Unbuffered)
g
g 150+
F e
1004 /./.
_—— E—
P — e
50 e
—
—
. ——

T
20 80 100

40 60
Percent of Video Updated

Figure 1: Comparison of the time to apply a single up-
date to a 2.5 minute video modifying varying percent-
ages of the frames of the video.

Protocol
—— Logical
1500 Hybrid
- —— Physical

—— Physical (Unbuffered)

4 5
Number of Updates

Figure 2: Comparison of the time to apply a number
of updates to a updates to a 2.5 minute video.

percentage of the video’s frames. As expected, in our original
protocol the time to apply an update stays roughly the same
regardless of how much of the video is modified, since it
always saves and overwrites the entire video. We are not en-
tirely sure why the time taken to log an update decreases as
the percent modified increases from 10% to 40%, but it may be
due fluctuations during benchmarking or in Petastorm. Also
as expected, in the buffered protocols the time taken to apply
an update increases linearly since more batches of frames
must be modified. The increase is more significant for the
hybrid and logical approaches since these protocols must ap-
ply the update and save versions of batches of frames to the
disk, incurring further penalty. This overhead is negligible
when small portions of the video are updated but becomes
significant as larger portions of the video are updated.

In the number of updates benchmark (Fig. 2), we wanted
to measure the performance impact of applying multiple up-
dates consecutively to a video. In this benchmark we update
every frame of a 2.5 minute video, as we believe updating
every frame of a video is the most typical update scenario.
As the number of updates applied increases, the time taken
to process the transaction increases linearly. The increase for
logical logging is the least significant of the protocols since
it need only apply the updates and log the update operation.
The increase in time for hybrid logging is more significant

700+ Protocol
— Logical
600 Hybrid
—— Physical
500+ —— Physical (Unbuffered)
4 400 .
2 _—
£ 300 /' S
i -
2004
./ / /.
v o
100 /,,// _
o4

0 5‘0 1[')0 léO 2(')0 Z_'I>0 360
Length of Video Updated (s)

Figure 3: Comparison of the time to apply a single up-
date to videos of varying lengths.

since it must save to disk the before version of every batch of
frames. Buffered physical logging incurs more overhead still
since it must log both the before and after versions of every
batch of frames. Our original protocol incurs significantly
more overhead than the buffered protocols since for every
update it must also save the before and after versions of the
video to the disk. Unlike the buffered protocols, however, the
original protocol must read and write the video from and to
disk for every update, while the buffered protocols can work
with the video in memory. Finally, the buffered protocols
are able to flush the modified batches concurrently to disk,
decreasing the time needed to write the video back to disk.
In the video length benchmark (Fig. 3), we wanted to see
how well our protocols scaled with larger videos. In this
benchmark, we applied one update to every frame of videos
with lengths from 6 seconds to 5 minutes. As expected, the
overhead for our naive protocol is much higher than the
buffered protocol since it cannot buffer parts of the video
in memory. The buffered protocol’s time to update starts to
increase more significantly past 150 seconds of video. This
is because the buffer manager was configured to hold about
150 seconds of video, so increases beyond that means batches
of frames start getting swapped in and out to disk, incurring
additional overhead. For shorter videos the difference in
overhead is negligible, but is much more pronounced for
longer videos. One surprise from this benchmark is that
the time to apply the update in the naive protocol almost
seems to increase quadratically with the increase in video
length. We believe this may be because of a constant amount
of overhead in the protocol that makes the graph appear
quadratic. If time allowed for testing longer videos, we expect
the behavior of the graph would be more linear. Another
surprise is the sudden jump in time for logical and hybrid
logging from the 150 second video to the 180 second video.
We believe this is due to the additional overhead from the
buffer manager starting to evict frames when it is full.
Next, we benchmarked the time taken to perform recovery
of a single committed or aborted transaction with a varying



o
_— Protocol
_— — Logical
400 - Hybrid
-
//. —— Physical
_ —— Physical (Unbuffered)
3004
o ///
P -
£ 200-] ///
= //
//
-
o
100 / -~ ——
——
. —
—
04

4 5
Number of Updates

Figure 4: Comparison of the time to redo a transaction
that applied a varying number of updates to a a 2.5
minute video.

e Protocol

— Logical
1400+ )
1200 =

— Physical (Unbuffered)
1000

.
- : ———
_—

600 -
4004 - ]

200 4'/

T T T T T T T T
1 2 3 7 8

Time (s)

R
o

4 5
Number of Updates

Figure 5: Comparison of the time to redo and undo a
transaction that applied a varying number of updates
to a 2.5 minute video.

number of updates. In these benchmarks we created a single
transaction where each update modified every frame of a
2.5 minute video. In the first case (Fig. 4) we committed the
transaction, simulated a crash, then measured the time taken
to redo the transaction. As expected, since the naive proto-
col immediately persists its changes and has no redo phase,
recovering committed transactions is almost instantaneous.
Buffered hybrid and logical logging have almost the same
performance since they both utilize logical redo. Hybrid log-
ging has slightly higher overhead than logical logging, likely
due to the larger and more complex log records it parses
during the recovery process. Buffered physical logging is
significantly slower than the hybrid and logical approaches,
since it must redo changes physically, which involves read-
ing the new version of every modified batch of frames from
disk.

In the second case (Fig. 5) we simulated a crash before
commit, then measured the time taken to redo and undo
the transaction. Buffered logical logging has the lowest over-
head since it redoes and then undoes the transactions ef-
fects logically without having to read large amounts of data
from disk. Hybrid logging incurs additional overhead since it
must undo changes physically by reading the original frame
batches from disk and rewrite them to the buffer manager.

Joseph Komskis and Isaac Weintraub

Buffered physical logging incurs still more overhead since it
must both redo and undo all changes physically, incurring
much more disk I/O. Finally, our naive protocol incurs the
greatest overhead since during the undo process it imme-
diately persists every undo operation to the storage engine
instead of being able to buffer the changes in memory.

The benchmarks were run on an Azure D8as_v4 virtual
machine with 8 vcpus, 32 GB of memory, and a 2 TB data
drive that provided 7,500 IOPS and 250 MBPS of throughput.
This was done for several reasons. First, this virtual machine
is a standard size that others could create to mimic our test-
ing environment more closely. Running the benchmarks on
our personal laptops would lead to less repeatable experi-
ments. Second, this machine was much more powerful than
our laptops, which allowed the benchmarks to be run more
quickly. Lastly, running the benchmarks on a cloud machine
avoided wear on our own computers.

7 RESOURCES NEEDED

In our unit tests and benchmarking we used videos pro-
vided by Visual Road [9], a video data management bench-
mark. This benchmark uses a game engine to simulate a
pseudo-randomly generated city with cars and pedestrians
and records the simulation using several cameras placed
around the city. The project pre-generated several datasets
in multiple resolutions and durations and made them avail-
able for download. Since the videos in this dataset tended to
be quite large (1 hour), we generated various prefixes of the
videos for our purposes.

8 GOALS

After presenting our project update and talking with the
professor and TA about our project, we decided to change
our goals slightly from our initial goals:

For our 75% goal (unchanged from the progress update)
we planned to create a simple storage engine and interface
to simulate queries on the database. This allowed us to begin
evaluating protocols and optimizations without incurring
the software engineering overhead of creating a production-
grade DBMS. Using this storage engine, we evaluated a naive
logging and recovery as a baseline and identified ways to
optimize logging and recovery with video data. This goal is
complete.

For our 100% goal we implemented a buffer manager on
top of the storage engine and created a new version of the
transaction manager and log manager that could make use of
the buffer manager. We then implemented a more optimized
logging and recovery protocol based on physical logging
that used the new buffer manager. This goal is also complete.



Optimizing Logging and Recovery of Video Data in DBMSs

For our 125% goal we further optimized our logging and re-
covery protocol and added support for logical and hybrid log-
ging in our protocol. We also developed and executed bench-
marks comparing our different protocols and approaches
to quantify the improvements we made. This goal is also
complete.

9 FUTURE WORK

There are several ways we could expand or improve our
project in the future given more time. First, given additional
time, we would have liked to integrate our project into an
existing project like EVA to assess its impact in a real-world
system. This was originally in our project goals, but after the
progress update we decided exploring buffer management
would be a more interesting and insightful task. This would
give us the opportunity to validate that our logging and re-
covery scheme is usable and effective in a more fully featured
project. It would suggest our solution has legitimate use in a
real-word scenario, and not just in an academic setting.

Given more time, it would be interesting to explore other
protocols for updating videos. For example, another tech-
nique to updating videos would have been to never material-
ize the updated video and store it in the database. Instead, the
DBMS could simply record the operations applied to a video,
and reapply them to the original source frames each time
the video is read. This would significantly increase write
performance, while decreasing read performance depending
on how compute intensive the operations are.

It would also be interesting to explore the use of a different
storage engine instead of Petastorm. We used Petastorm
because that was the project EVA chose to use for storage,
but we likely did make use of many of the features it had to
offer. There may be other video storage engines that would
have been much more efficient for a project such as ours.

Our project read and wrote videos in terms of raw frames.
While this worked well enough for our use cases, working
with raw frames incurred significant memory and disk usage
and bandwidth. With more time, it would have been interest-
ing to explore different ways of encoding video data to try
to reduce this footprint and possibly increase performance.

If we had more time for benchmarking, we would have
liked to see how changing the size of the buffer manager
impacts performance. This was tested to some extent in our
video length updated benchmark since the longer videos did
not fit entirely in the buffer, but it would have been nice to
have a benchmark dedicated to it. This would not be too dif-
ficult to add to our project, but running a reliable benchmark
for this would be time consuming. Likewise, it would have
been nice to extend our benchmarking with mixed workloads
to better approximate real usage in contrast to our existing
cases which test one operation at a time. We also developed

a framework for running benchmark cases under profiling
but did not have much time to derive useful insights from it.
In the future, having this profiling infrastructure would help
empirically identify parts of our implementation to optimize.

REFERENCES

[1] [n.d.]. Apache Spark - Unified Analytics Engine for Big Data. Retrieved
March 6, 2021 from https://spark.apache.org/
[2] [n.d.]. EVA: Exploratory Video Analytics System. Retrieved March 6,
2021 from https://github.com/georgia-tech-db/eva
[3] [n.d.]. OpenCV. Retrieved March 6, 2021 from https://opencv.org/
[4] [n.d.]. Petastorm. Retrieved March 6, 2021 from https://github.com/
uber/petastorm
[5] Walid G. Aref, Ann Christine Catlin, Jianping Fan, Ahmed K. Elma-
garmid, Moustafa A. Hammad, Thab F. Ilyas, Mirette S. Marzouk, and
Xingquan Zhu. 2002. A Video Database Management System for Ad-
vancing Video Database Research. In MIS 2002, International Workshop
on Multimedia Information Systems, October 10 - November 1, 2002,
Tempe, Arizona, USA, Proceedings. Arizona State University, 8—17.
Mehmet Emin Dénderler, Ediz Saykol, Umut Arslan, Ozgiir Ulusoy, and
Ugur Gudiikbay. 2005. BilVideo: Design and Implementation of a Video
Database Management System. Multimedia Tools and Applications 27,
1 (01 Sep 2005), 79-104. https://doi.org/10.1007/s11042-005-2715-7
Brandon Haynes, Maureen Daum, Amrita Mazumdar, Magdalena Bal-
azinska, Alvin Cheung, and Luis Ceze. 2020. VisualWorldDB: A DBMS
for the Visual World. In CIDR 2020, 10th Conference on Innovative
Data Systems Research, Amsterdam, The Netherlands, January 12-15,
2020, Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/
papers/p12-haynes-cidr20.pdf
Brandon Haynes, Amrita Mazumdar, Magdalena Balazinska, Luis Ceze,
and Alvin Cheung. 2018. LightDB: A DBMS for Virtual Reality Video.
Proceedings of the VLDB Endowment 11, 10 (01 Jul 2018). https://doi.
org/10.14778/3231751.3231768
Brandon Haynes, Amrita Mazumdar, Magdalena Balazinska, Luis Ceze,
and Alvin Cheung. 2019. Visual Road: A Video Data Management
Benchmark. In Proceedings of the 2019 International Conference on Man-
agement of Data, SIGMOD Conference 2019, Amsterdam, The Nether-
lands, June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia
Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 972-987.
https://doi.org/10.1145/3299869.3324955
[10] Luis Remis, Vishakha Gupta-Cledat, Christina R. Strong, and Ra-
gaad AlTarawneh. 2018. VDMS: An Efficient Big-Visual-Data Ac-
cess for Machine Learning Workloads. CoRR abs/1810.11832 (2018).
arXiv:1810.11832 http://arxiv.org/abs/1810.11832
[11] Tiantu Xu, Luis Materon Botelho, and Felix Xiaozhu Lin. 2018. Rein-
venting Data Stores for Video Analytics. CoRR abs/1810.01794 (2018).
arXiv:1810.01794 http://arxiv.org/abs/1810.01794

[6

—

[7

—

[8

[t

[9

—


https://spark.apache.org/
https://github.com/georgia-tech-db/eva
https://opencv.org/
https://github.com/uber/petastorm
https://github.com/uber/petastorm
https://doi.org/10.1007/s11042-005-2715-7
http://cidrdb.org/cidr2020/papers/p12-haynes-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p12-haynes-cidr20.pdf
https://doi.org/10.14778/3231751.3231768
https://doi.org/10.14778/3231751.3231768
https://doi.org/10.1145/3299869.3324955
https://arxiv.org/abs/1810.11832
http://arxiv.org/abs/1810.11832
https://arxiv.org/abs/1810.01794
http://arxiv.org/abs/1810.01794

	1 The Problem
	2 Problem Importance
	3 Related Work
	4 Implementation
	4.1 Limitations & Surprises
	4.2 Naive Logging and Recovery Protocol
	4.3 Buffer Manager
	4.4 Buffered Logging and Recovery Protocols

	5 Solution Validation
	6 Solution Evaluation
	7 Resources Needed
	8 Goals
	9 Future Work
	References

